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Abstract. We first present a non-linear Schrodinger equation that describes wave propaga- 
tion in fluids and plasmas with sharp boundaries and dissipation. Then we show that an 
exact solution can be found. 

In fluids and plasmas one often (e.g. [ 11) considers the propagation of a large-amplitude 
plane wave + exp(ikox - h o t ) ,  where $ is a slowly varying complex envelope function 
of the modulated wave with carrier frequency wo and wavenumber ko, and derives a 
dispersion relation 

w = w(k, M’). (1) 
Equation (1) is thereafter used to construct a wave equation by the expansion 

One then substitutes the operator i a / d t  for w - wo and -i alax for k - koa However, 
for (k  - k,)’ one may substitute either -a2/ax2 or -(a/dx)‘. Transforming to a coordin- 
ate system moving at the group speed, i.e. x+x-(aw/ak,)t, one thus obtains the 
equation 

a *  a** 
i - + P o ~ + ~ o I * I + + C o  a t  ax 

where po  =$ a2wo/aki and qo = -awo/dl+1’, and where CO is an arbitrary constant. 
Equation (2) has previously been found by Gradov and Stenflo [2] in their studies 

of plasmas with sharp boundaries. It should also be stressed that the corresponding 
textbook derivations (e.g. [l]) of (2) all overlook the CO term. 

Here we shall generalise the Gradov-Stenflo equation (2) to allow the coefficients 
to be complex. Thus we introduce the equation 

i a,+ + ( P  + C )  a:* + ql+12+ = C(ax*)*/+ +iY+ (3) 
where p ,  q, y and C are arbitrary complex parameters, which we write as p =pr+ip i ,  
etc. In the particular case where C is zero, we note that (3) reduces to the well known 
Ginzburg-Landau equation with complex coefficients (e.g. [3-121). That equation has 
a wide range of applications, as, for example (see [6] and the references therein), for 
phase transitions in non-equilibrium systems, B6nard convection, Taylor-Couette flow, 
Poiseuille flow in fluid systems, drift dissipative waves in plasma physics, chemical 
turbulence and ionisation waves in glow discharges. However, in the above-mentioned 
examples one has to introduce (3), with non-zero C, and Ci, if sharp boundaries are 
present [2]. 
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The solutions of (3), which may describe a chaotic state, are of course very complex. 
Here we shall just point out that, despite the complexity of (3), it is possible to find 
an exact and comparatively very simple solution of that equation. Thus, as can easily 
be verified by direct substitution, the function 

$(x, t )  = qo(cosh Kx)-'-'" exp(-int) (4) 

satisfies (3) if 

where 

and 

The present approach represents evidently only a first step in the investigation of 
(3). Accordingly, at this stage of the analysis we cannot know whether the solution 
(4) is stable or unstable. In forthcoming studies it should therefore be of interest to 
generalise (3) to the three-dimensional case, for example by adding a a2$/ay2 term 
(see, e.g., [5, 121) to (3). 
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